The OptMatLab research group

Optmatlab poster

OptMatLab group featured in the J.A. Woollam 2022 Newsletter
 https://www.jawoollam.com/newsletters/issue-22

 

The OptMatLab research group studies the properties of matter at the nanoscale by using various spectroscopic techniques. By employing light beams with suitable characteristics, it is possible to obtain detailed information about the microscopic behavior of matter and understand its optical, electronic, chemical and structural properties. The aim of our studies is to create and advance knowledge on innovative materials and devices of relevant scientific and technological interest.

We work on several projects encompassing a wide range of materials, devices and characterization techniques. Over the years, we have built a solid competence in the determination of the optical properties of thin films (oxides, metals, polymers, DNA), bi-dimensional materials (graphene, transition metal dichalcogenides...) and nanoparticles systems. We have a suitable array of instruments that allows us to study the evolution of the materials' properties by varying the ambient conditions, such as temperature and atmosphere. The results of our work are periodically published on international peer-review journals and presesented at seminars and conferences.

The OptMatLab research group is active in the R&D of the multilayer optical coatings, which constitute the main mirrors in the Virgo gravitational wave detector (https://www.virgo-gw.eu/). Within the Einsten Telescope Infrastructure Consortium (ETIC) (https://web.infn.it/einsteintelescope/index.php/it/home-it-it/infrastrutture-e-labs/galileo), OptMatLab is developing systems for thin film deposition and characterization. These films are prototypes for the main mirrors in the Einstein Telescope, a next-generation gravitational wave detector currently under development (https://www.einstein-telescope.it/).

 

Instrumentation:
- Spectroscopic ellipsometer J.A. Woollam VASE (spectral range: 190-2500 nm)
- Spectroscopic ellipsometer J.A. Woollam M2000 (spectral range: 245-1700 nm)
- Spectroscopic ellipsometer SENTECH SENDIRA (spectral range: 1670-25000 nm – 6000-400 cm-1)
- Confocal Raman microscope Jasco NRS 4100 
- Photothermal Common Path Interferometry (PCI) to measure ultralow optical absorption at 1550 e 1064 nm
- Optical system to measure Photoluminescence

Methods of optical spectroscopy:
- as a function of temperature, from 4 K to 900 K
- ambient atmosphere, high vacuum
- liquid ambient

Systems to grow materials in vacuum:
-   Molecular Beam Epitaxy (MBE)
-   Ion Beam Sputtering with in-situ ellipsometry (J.A. Woollam iSE – 400-1000 nm) 

Shared instrumentation within the Dipartimento di Fisica:
-    Micro-ellipsometer Park EP_4 (lateral resolution: 1 µm, spectral range: 360-1000 nm)
-    X-Ray Photoemission Spectrometer with monochromatized source

 

Selected publications

Noninvasive Deterministic Nanostructures Lithography on 2D Transition Metal Dichalcogenides

Lorenzo Ramò, Ermes Peci, Michele Magnozzi, Emma Spotorno, Valentina Venturino, Maria Sygletou, Maria Caterina Giordano, Giorgio Zambito, Francesca Telesio, Zygmunt Milosz, Maurizio Canepa, and Francesco Bisio.
Advanced Engineering Materials, 2024, 202401157.

Monitoring the evolution of optical coatings during thermal annealing with real-time, in situ spectroscopic ellipsometry

Stefano Colace, Shima Samandari, Massimo Granata, Alex Amato, Michael Caminale, Christophe Michel, Gianluca Gemme, Laurent Pinard, Maurizio Canepa, Michele Magnozzi.
Class. Quant. Grav. 41, 2024, 175016.

Dielectric Function of 2D Tungsten Disulfide in Homo- and Heterobilayer Stacking

Ermes Peci, Michele Magnozzi, Lorenzo Ramó, Marzia Ferrera, Domenica Convertino, Simona Pace, Giorgio Orlandini, Apoorva Sharma, Ilya Milekhin, Georgeta Salvan, Camilla Coletti, Dietrich R. T. Zahn, Francesco Bisio, Maurizio Canepa.
Advanced Materials Interfaces, 2023,10, 2201586.
(il paper è nel top 10% dei più letti sulla rivista a 12 mesi dalla pubblicazione)

Spectroscopic Ellipsometry Investigation of a Sensing Functional Interface: DNA SAMs Hybridization

Giulia Pinto, Silvia Dante, Silvia Maria Cristina Rotondi, Paolo Canepa, Ornella Cavalleri, Maurizio Canepa.
Advanced Materials Interfaces, 2022, 9, 2200364.

Local Optical Properties in CVD-Grown Monolayer WS2 Flakes

Michele Magnozzi, Theo Pflug, Marzia Ferrera, Simona Pace, Lorenzo Ramó, Markus Olbrich, Paolo Canepa, Hasret Ağircan, Alexander Horn, Stiven Forti, Ornella Cavalleri, Camilla Coletti, Francesco Bisio, Maurizio Canepa.
J. Phys. Chem. C, 125, 16059, 2021.

Quantitative Ultrafast Electron-Temperature Dynamics in Photo-Excited Au Nanoparticles

Maria Sygletou, Stefania Benedetti, Marzia Ferrera, Gian Marco Pierantozzi, Riccardo Cucini, Giuseppe Della Valle, Pietro Carrara, Alessandro De Vita, Alessandro di Bona, Piero Torelli, Daniele Catone, Giancarlo Panaccione, Maurizio Canepa, Francesco Bisio.
Small, 2100050, 2021.

Optical dielectric function of two-dimensional WS2 on epitaxial graphene

Michele Magnozzi, Marzia Ferrera, Giulia Piccinini, Simona Pace, Stiven Forti, Filippo Fabbri, Camilla Coletti, Francesco Bisio, Maurizio Canepa.
2D Materials, 2020, 7, 025024.

Thermometric Calibration of the Ultrafast Relaxation Dynamics in Plasmonic Au Nanoparticles

Marzia Ferrera, Giuseppe Della Valle, Maria Sygletou, Michele Magnozzi, Daniele Catone, Patrick O’Keeffe, Alessandra Paladini, Francesco Toschi, Lorenzo Mattera, Maurizio Canepa, Francesco Bisio.
ACS Photonics, 2020, 7, 959-966.

Plasmonics of Au/Polymer Core/Shell Nanocomposites for Thermoresponsive Hybrid Metasurfaces

Michele Magnozzi, Yannic Brasse, Tobias AF König, Francesco Bisio, Eva Bittrich, Andreas Fery, Maurizio Canepa.
ACS Applied Nano Materials, 2020, 3, 1674-1682.

Temperature-dependent permittivity of silver and implications for thermoplasmonics

Marzia Ferrera, Michele Magnozzi, Francesco Bisio, Maurizio Canepa.
Physical Review Materials, 2019, 3, 105201.

Plasmonics of Au nanoparticles in a hot thermodynamic bath

Michele Magnozzi, Marzia Ferrera, Lorenzo Mattera, Maurizio Canepa, Francesco Bisio.
Nanoscale, 2019, 11, 1140-1146.

Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling

Paolo Canepa, Grazia Gonella, Giulia Pinto, Vladimir Grachev, Maurizio Canepa, and Ornella Cavalleri.
J. Phys. Chem. C, 2019, 123, 16843-16850.

Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology

Michele Magnozzi, Silvana Terreni, Luca Anghinolfi, Sureeporn Uttiya, Maria Maddalena Carnasciali, Gianluca Gemme, Martina Neri, Maria Principe, Innocenzo Pinto, Lingchi Kuo, Shiuh Chao, Maurizio Canepa.
Optical Materials, 2018, 75, 94-101.

Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation

Francesco Bisio, Emiliano Principi, Michele Magnozzi, Alberto Simoncig, Erika Giangrisostomi, Riccardo Mincigrucci, Luca Pasquali, Claudio Masciovecchio, Federico Boscherini, Maurizio Canepa.
Physical Review B, 2017, 96, 081119.