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Cycle/Session XXXVIII/2025-2026 

Training Activities: 

Course / Topic Instructor Institute Dated 

Italian Language and 

Culture 

Prof. Silvano Tosi Dep of Physics, 
UniGe 

Mar 2025 
~ 

June 2025 

Imprecise Probabilistic 

Machine Learning 

(IPML) 

Prof. Krikamol Muandet 

 

CISPA Helmholtz 

Center for 
Information 

Security, Germany 

 

Nov 2025 

~ 
Jan 2026 

Research Project    

Practical Hands-on Related Software including python   

Practical Hands-on Related Software including 
Latex/Overleaf 

  

Other Training Activities: 

Course / Topic Role/ 

Participation 
Institute/By/Tool From-to 

50th Intl. Nathiagali Summer 

College on Physics and 

Contemporary Needs  

Speaker/Participant National Centre for 

Physics, Islamabad, 

Pakistan 

June 2025-June 

2025 

IBM–UNITO Innovation 
Lab on Future Computing 

Technologies 

Participant Department of 
Computer Science, 

UniTo, Italy 

 

October 2025-
October 2025 

Publications 

Title Journal/Publisher Year 

Resource reduction for variational quantum 

algorithms by non-demolition measurements  

arXiv:2503.24090 

The European Physical 

Journal D (EPJ D)/Springer 

Nature 

 

2025 

Research Project 

1. Introduction- Hybrid Quantum-Classical Optimization and the Role of 

QNDM 

Complex physical system simulations and huge linear algebra calculations that are beyond the 

capabilities of classical computers can be solved with the aid of quantum computers. Although 

https://arxiv.org/abs/2503.24090
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today's quantum devices are noisy and limited in size, hybrid quantum-classical algorithms like 

QAOA and VQE make quantum observations practical by combining them with classical 

optimization. These techniques involve a quantum circuit evaluating a cost function and a classical 

processor updating the circuit parameters in response to the results of the measurements. However, 

this procedure becomes costly due to the need for numerous circuit evaluations to compute 

gradients accurately, due to noisy hardware and restricted qubit counts. Many significant 

applications, including drug design, molecular simulation, and material discovery, rely on solving 

such optimization problems, which aim to determine the minimum of a cost function. The typical 

Direct Measurement (DM) approach calculates gradients by assessing the circuit at two close 

parameter values for each parameter, which is slow and resource-intensive. The process is further 

complicated by the lack of a single preferred measuring approach because derivatives cannot be 

associated with a simple Hermitian operator. The Quantum Non-Demolition Measurement 

(QNDM) approach, which connects a quantum detector to the system so that the detector phase 

contains information about the observable and its gradient, is one way to overcome these 

constraints. As a result, the gradient can be taken from a single measurement instead of several 

measurements. Both theoretical and numerical results demonstrate that QNDM offers significant 

resource savings even for moderately complex systems when DM and QNDM are compared in 

terms of statistical error, circuit repetitions, and total computational cost. Even greater benefits are 

anticipated for realistic problems of intermediate size where resource efficiency is crucial. 

 

2. Comparison of Direct Measurement (DM) and Quantum Non-

Demolition Measurement (QNDM) Approaches 

This work compares two methods to determine a quantum system's lowest energy state: Direct 

Measurement (DM) and Quantum Non-Demolition Measurement (QNDM). In variational 

quantum algorithms, both methods are used to improve molecular simulations, such as those for 

lithium-hydrogen (Li-H), Hydrogen (H2), and lithium-lithium (Li2) molecules. While DM has been 

a widely studied algorithm in the quantum optimization literature, QNDM provides a new 

computing strategy that leverages higher derivatives in a single run of a quantum circuit to reduce 

the computing resources required. 

DM computes the cost function and its gradient by querying specific elements of the Hamiltonian. 

Quantum circuits are executed in DM to obtain the expectation values and the parameter shifts, 

after which the parameter-shift rule is used to compute the gradient. It requires different 

measurements for each parameter, leading to a more computationally hefty approach as the circuit 

grows more complex, especially in highly qubit-limited systems or where high-accuracy results 

are desired. 

The unique feature of Quantum Non-Demolition Measurement (QNDM) is that the quantum 

detector is coupled to the system; thus, you can obtain information about the phase derivative of 

the observable, and it will be performed during the measurements. 

This approach provides access to both the gradient and all higher-order derivatives directly from 

a single run of a single circuit, thereby reducing the number of repetitions we need to perform. 



 
 

 

 3 

QNDM is helpful in optimization algorithms, like gradient descent, because it speeds up 

convergence by skipping the need for extra measurements for each gradient calculation. 

3. Methodology 

The QNDM method connects a quantum system with a quantum detector, which gathers 

information about the observable gradient in its phase during a system-detector interaction. This 

happens through a few key steps: 

1. System-Detector Coupling: The quantum system evolves under a unitary operator based on 

Hamiltonian parameters. While they interact, the system state is “frozen,” allowing the 

detector’s phase to store information about the desired derivative of the observable.  

2. Detector Measurement: The quasi-characteristics function, which shows the accumulated 

phase of the detector, gives us the gradient of the cost function with less computational 

demands. 

3. Implementation with Qiskit for Molecule Optimization: For practical use, the QNDM 

method was tested on molecular systems, including Lithium-Hydrogen (Li-H), Hydrogen (H2), 

and Lithium-Lithium (Li2), through Qiskit. The process includes: 

i. Constructing the Hamiltonian: The Hamiltonian becomes a sparse Pauli operator, 

prepared for the quantum states of Li-H, H2, and Li2 molecules. 

ii. Quantum Circuit Setup: Layered parameterized quantum circuits are 

built using rotation and entangling gates, optimized by QNDM. 

iii. Gradient Calculation and Optimization: QNDM calculates gradients effectively to 

iteratively lower the Hamiltonian energy, the molecule’s ground-state energy. 

This approach was compared with the Direct Measurement (DM) technique, showing that 

QNDM can reach similar accuracy but needs less circuit depth and fewer measurements, 

highlighting its practical implementation in optimizing quantum tasks. 

4. Accuracy and Statistical Behavior Across All Molecules 

Both the DM and QNDM approaches reached the same minimum energy for each of the three 

molecules (H2, Li-H, and Li2), demonstrating their similar accuracy in calculating ground-state 

energies. Both approaches performed comparably in the simplest system, H2, but as the circuit 

size grew, QNDM already demonstrated less uncertainty and smoother convergence. For the 

more complex Li-H, QNDM demonstrated more steady convergence across various starting 

parameters and used roughly 79% fewer resources while maintaining the same level of accuracy 

as DM. In the largest system, Li2, QNDM demonstrated less statistical fluctuations and used 

about 71% fewer logical operations while still matching the final energy determined by DM. 

Overall, the results from all three molecules demonstrate that QNDM offers faster, smoother, 

and more resource-efficient convergence while maintaining accuracy, particularly as molecular 

complexity increases. 

5. The Large Hamiltonian 

To evaluate the behavior of the DM and QNDM approaches on larger and more complex 

systems, we tested them on Hamiltonians with a high number of Pauli terms (J = 750) and (J = 

1000), while keeping the system size fixed at (n = 10) qubits.  With this configuration, we could 

raise the Hamiltonian complexity without adding more qubits, which made it simpler to 

examine the scaling of both approaches.  The two approaches achieved comparable minimum 

energies in both situations, demonstrating that they are still accurate even for huge 

Hamiltonians.  In contrast to DM, QNDM required far fewer logical operations and converged 



 
 

 

 4 

more smoothly.  These findings demonstrate that QNDM scales more effectively than DM and 

maintains its efficacy even at very large Hamiltonian sizes. 

Dated: 27/11/2025 
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