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Research Project
1. Introduction- Hybrid Quantum-Classical Optimization and the Role of
QNDM

Complex physical system simulations and huge linear algebra calculations that are beyond the

capabilities of classical computers can be solved with the aid of quantum computers. Although


https://arxiv.org/abs/2503.24090
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today's quantum devices are noisy and limited in size, hybrid quantum-classical algorithms like
QAOA and VQE make quantum observations practical by combining them with classical
optimization. These techniques involve a quantum circuit evaluating a cost function and a classical
processor updating the circuit parameters in response to the results of the measurements. However,
this procedure becomes costly due to the need for numerous circuit evaluations to compute
gradients accurately, due to noisy hardware and restricted qubit counts. Many significant
applications, including drug design, molecular simulation, and material discovery, rely on solving
such optimization problems, which aim to determine the minimum of a cost function. The typical
Direct Measurement (DM) approach calculates gradients by assessing the circuit at two close
parameter values for each parameter, which is slow and resource-intensive. The process is further
complicated by the lack of a single preferred measuring approach because derivatives cannot be
associated with a simple Hermitian operator. The Quantum Non-Demolition Measurement
(QNDM) approach, which connects a quantum detector to the system so that the detector phase
contains information about the observable and its gradient, is one way to overcome these
constraints. As a result, the gradient can be taken from a single measurement instead of several
measurements. Both theoretical and numerical results demonstrate that QNDM offers significant
resource savings even for moderately complex systems when DM and QNDM are compared in
terms of statistical error, circuit repetitions, and total computational cost. Even greater benefits are

anticipated for realistic problems of intermediate size where resource efficiency is crucial.

Comparison of Direct Measurement (DM) and Quantum Non-
Demolition Measurement (QNDM) Approaches

This work compares two methods to determine a quantum system's lowest energy state: Direct
Measurement (DM) and Quantum Non-Demolition Measurement (QNDM). In variational
quantum algorithms, both methods are used to improve molecular simulations, such as those for
lithium-hydrogen (Li-H), Hydrogen (H>), and lithium-lithium (Li,) molecules. While DM has been
a widely studied algorithm in the quantum optimization literature, QNDM provides a new
computing strategy that leverages higher derivatives in a single run of a quantum circuit to reduce
the computing resources required.

DM computes the cost function and its gradient by querying specific elements of the Hamiltonian.
Quantum circuits are executed in DM to obtain the expectation values and the parameter shifts,
after which the parameter-shift rule is used to compute the gradient. It requires different
measurements for each parameter, leading to a more computationally hefty approach as the circuit
grows more complex, especially in highly qubit-limited systems or where high-accuracy results
are desired.

The unique feature of Quantum Non-Demolition Measurement (QNDM) is that the quantum
detector is coupled to the system; thus, you can obtain information about the phase derivative of
the observable, and it will be performed during the measurements.

This approach provides access to both the gradient and all higher-order derivatives directly from
a single run of a single circuit, thereby reducing the number of repetitions we need to perform.
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QNDM is helpful in optimization algorithms, like gradient descent, because it speeds up
convergence by skipping the need for extra measurements for each gradient calculation.

Methodology

The QNDM method connects a quantum system with a quantum detector, which gathers

information about the observable gradient in its phase during a system-detector interaction. This

happens through a few key steps:

1. System-Detector Coupling: The quantum system evolves under a unitary operator based on

Hamiltonian parameters. While they interact, the system state is “frozen,” allowing the
detector’s phase to store information about the desired derivative of the observable.

. Detector Measurement: The quasi-characteristics function, which shows the accumulated

phase of the detector, gives us the gradient of the cost function with less computational
demands.
Implementation with Qiskit for Molecule Optimization: For practical use, the QNDM
method was tested on molecular systems, including Lithium-Hydrogen (Li-H), Hydrogen (H»),
and Lithium-Lithium (L1i,), through Qiskit. The process includes:
i.  Constructing the Hamiltonian: The Hamiltonian becomes a sparse Pauli operator,
prepared for the quantum states of Li-H, H», and Li, molecules.
ii. Quantum Circuit Setup: Layered parameterized quantum circuits are
built using rotation and entangling gates, optimized by QNDM.
iii. = Gradient Calculation and Optimization: QNDM calculates gradients effectively to
iteratively lower the Hamiltonian energy, the molecule’s ground-state energy.

This approach was compared with the Direct Measurement (DM) technique, showing that
QNDM can reach similar accuracy but needs less circuit depth and fewer measurements,
highlighting its practical implementation in optimizing quantum tasks.

Accuracy and Statistical Behavior Across All Molecules

Both the DM and QNDM approaches reached the same minimum energy for each of the three
molecules (Hz, Li-H, and Li,), demonstrating their similar accuracy in calculating ground-state
energies. Both approaches performed comparably in the simplest system, H», but as the circuit
size grew, QNDM already demonstrated less uncertainty and smoother convergence. For the
more complex Li-H, QNDM demonstrated more steady convergence across various starting
parameters and used roughly 79% fewer resources while maintaining the same level of accuracy
as DM. In the largest system, Li,, QNDM demonstrated less statistical fluctuations and used
about 71% fewer logical operations while still matching the final energy determined by DM.
Overall, the results from all three molecules demonstrate that QNDM offers faster, smoother,
and more resource-efficient convergence while maintaining accuracy, particularly as molecular
complexity increases.

The Large Hamiltonian

To evaluate the behavior of the DM and QNDM approaches on larger and more complex
systems, we tested them on Hamiltonians with a high number of Pauli terms (J = 750) and (J =
1000), while keeping the system size fixed at (n = 10) qubits. With this configuration, we could
raise the Hamiltonian complexity without adding more qubits, which made it simpler to
examine the scaling of both approaches. The two approaches achieved comparable minimum
energies in both situations, demonstrating that they are still accurate even for huge
Hamiltonians. In contrast to DM, QNDM required far fewer logical operations and converged
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more smoothly. These findings demonstrate that QNDM scales more effectively than DM and
maintains its efficacy even at very large Hamiltonian sizes.
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