

Second Year PhD Report (XXXIX Cycle)

Department of Physics, Curriculum Bio-Nanoscience, University of Genova

Ph.D. Student: Muhammad Sohaib

Ph.D. Supervisors: Dr. Andrea Toma, Dr. Vincenzo Aglieri

The second year of my PhD has been primarily focused on the fabrication and optical investigation of plasmonic nanostructures, exploring light-matter interactions, mainly through collective lattice resonances. Alongside standard nanostructure layouts, I expanded my study to more complicated architectures, such as circular and triangular holes, thus further extending my fabrication skills towards focused ion beam machining.

I also deepen steady-state optical spectroscopy competences using a custom-made set up to evaluate the impact of structure, surrounding medium, and light polarization on the nanostructure resonances. Whitin this context, I carried out comprehensive studies on bipartite plasmonic arrays, which permit independent activation of electric and magnetic lattice resonances [1, 2]. My contributions entailed fabricating the nanostructures by electron beam lithography and doing systematic optical characterizations, showing the unique spectral fingerprints associated with this design. The results were collected in a paper currently submitted to an international scientific journal. Concurrently, my investigation is focusing on the fabrication of plasmon-based platforms for topological photonics and/or for their integration with low dimensional materials, e.g. quantum dots and nanoplatelets, for strong lightmatter interaction studies.

Overall, my second-year research has been highlighted by the effective combination of fabrication skills, optical characterization, and experimental analysis of collective resonances excited on plasmonic systems. In line with this, I have established a coherent experimental research path that addresses fundamental questions in light-matter interaction and collective photonics, where significant results that are specifically important for practical application have been demonstrated.

Attended Courses and Exams

- Biosensing (Exam Given)
- Introduction to Nanophotonics and Nanofabrication
- Design of Superconducting Magnets
- Open Science and Research Data Management (OS&RDM)

Workshop

• Basic of Scientific Writing (May 19th and 20th 2025 Hack room, CCT-Genova Morego)

Other activities and collaboration

IIT seminars, invited by supervisor

• Alejandro Manjavacas Instituto de Química Física "Blas Cabrera" – CSIC Madrid, Spain "Lattice resonances: a collective response of periodic arrays of nanostructures" (26 March 2025)

Acknowledgement

This project received support by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program "REPLY ERC-2020-COG Grant agreement No. 101002422".

Reference

- 1. Alvarez-Serrano, J.J., et al., Normal incidence excitation of out-of-plane lattice resonances in bipartite arrays of metallic nanostructures. ACS photonics, 2023. **11**(1): p. 301-309.
- Cerdán, L., et al., Perfect Absorption with Independent Electric and Magnetic Lattice Resonances in Metallo-Dielectric Arrays. Advanced Optical Materials, 2024. 12(13): p. 2302737.