Advanced Computational Physics

R. Ferrando, G. Rossi (Univ. Genova), F. Montalenti (Univ. Milano Bicocca)

- The energy landscape: properties and complexity (R. Ferrando)
 - Funnel-like and glassy potential energy surfaces
 - Inherent structure
 - Calculating the partition function: superposition appoximation
 - Transition rates: Transition State Theory, Kramers Theory
- Exploring the energy landscape: the global optimization problem (R. Ferrando)
 - Basics of Monte-Carlo and Molecular Dynamics simulations
 - Basin Hopping algorithm
 - Genetic algorithms
- Exploring the energy landscape: looking for saddle points (R. Ferrando)
 - Nudged Elastic Band method
 - Eigenvector Following
- Accelerated methods for exploring the energy landscape (F. Montalenti)
 - On-the-fly Monte Carlo
 - Hyperdynamics
 - Temperature Accelerated Dynamics
 - Parallel Replica Dynamics
- The free-energy landscape (G. Rossi)
 - Collective variables
- Sampling the free-energy landscape (G. Rossi)
 - Umbrella Sampling
 - Metadynamics